Crowd Light: Evaluating the Perceived Fidelity of Illuminated Dynamic Scenes
نویسندگان
چکیده
Rendering realistic illumination effects for complex animated scenes with many dynamic objects or characters is computationally expensive. Yet, it is not obvious how important such accurate lighting is for the overall perceived realism in these scenes. In this paper, we present a methodology to evaluate the perceived fidelity of illumination in scenes with dynamic aggregates, such as crowds, and explore several factors which may affect this perception. We focus in particular on evaluating how a popular spherical harmonics lighting method can be used to approximate realistic lighting of crowds. We conduct a series of psychophysical experiments to explore how a simple approach to approximating global illumination, using interpolation in the temporal domain, affects the perceived fidelity of dynamic scenes with high geometric, motion, and illumination complexity. We show that the complexity of the geometry and temporal properties of the crowd entities, the motion of the aggregate as a whole, the type of interpolation (i.e., of the direct and/or indirect illumination coefficients), and the presence or absence of colour all affect perceived fidelity. We show that high (i.e., above 75%) levels of perceived scene fidelity can be maintained while interpolating indirect illumination for intervals of up to 30 frames, resulting in more than a greater than three-fold rendering speed-up.
منابع مشابه
Perceived glossiness in high dynamic range scenes.
We investigated how spatial pattern, background, and dynamic range affect perceived gloss in brightly lit real scenes. Observers viewed spherical objects against uniform backgrounds. There were three possible objects. Two were black matte spheres with circular matte white dots painted on them (matte-dot spheres). The third sphere was painted glossy black (glossy black sphere). Backgrounds were ...
متن کاملPerceived surface color in binocularly viewed scenes with two light sources differing in chromaticity.
We examined the effect of perceived orientation on the perceived color of matte surfaces in rendered three-dimensional scenes illuminated by a blue diffuse light and a yellow punctate light. On each trial, observers first adjusted the color of a matte test patch, placed near the center of the scene, until it appeared achromatic, and then estimated its orientation by adjusting a monocular gradie...
متن کاملIncreasing the Complexity of the Illumination May Reduce Gloss Constancy
We examined in which way gradual changes in the geometric structure of the illumination affect the perceived glossiness of a surface. The test stimuli were computer-generated three-dimensional scenes with a single test object that was illuminated by three point light sources, whose relative positions in space were systematically varied. In the first experiment, the subjects were asked to adjust...
متن کاملSpatio-temporal crowd density model in a human detection and tracking framework
Recently significant progress has been made in the field of person detection and tracking. However, crowded scenes remain particularly challenging and can deeply affect the results due to overlapping detections and dynamic occlusions. In this paper, we present a method to enhance human detection and tracking in crowded scenes. It is based on introducing additional information about crowds and i...
متن کاملModeling Collective Crowd Behaviors in Video
Crowd behavior analysis is an interdisciplinary topic. Understanding the collective crowd behaviors is one of the fundamental problems both in social science and natural science. Research of crowd behavior analysis can lead to a lot of critical applications, such as intelligent video surveillance, crowd abnormal detection, and public facility optimization. In this thesis, we study the crowd beh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 31 شماره
صفحات -
تاریخ انتشار 2012